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A B S T R A C T  

Necessary and sufficient conditions are obtained for the existence of 
sequences of rational functions of the form rn(x) = pn(x)/p,~(-x), with 
Pn a polynomial of degree n, tha t  decrease geometrically on (0, 1] in 
accordance with a specified rate function. The technique of proof in- 
volves minimum energy problems for Green potentials in the presence of 
an external field. Applications are given for the construction of ratio- 
nal approximations of [xl and sgn(x) on [-1 ,  1] having geometric rates of 
convergence for x ¢ 0. 

1. I n t r o d u c t i o n  

R a t i o n a l  f u n c t i o n s  of  t h e  f o r m  

(1.1) r,~(x) = P ~ ( x ) / P n ( - x )  
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(Pn stands for a polynomial of degree < n) play an important role in rational 

approximation on [-1, 1]. Once we have constructed rn of the form (1.1) that  is 

fast decreasing on [0, 1] (note that rn(0) = 1), we automatically get good rational 

approximants for Ixl, sgnx, and related functions (cf. [11], [4], [19], [8]). On the 

other hand, Newman's inequality (cf. [11], Lemma 3.1) 

~x 1 ~ - -  t dt ~2 
( 1 . 2 )  log~--~y_>--~-, 0 < x < l ,  ~eC, 

implies that  any rn of the form (1.1) must satisfy 

(1.3) maxlrn I > exp~-Tr2n/21og 1-~, 0 < x <  1, 
[~,1] L x J 

so that such r~ cannot decrease "too fast" (see also [3]). Let us formulate a 

general problem. 

Given a function ~ that is continuous on [0, 1] and satisfies ~(0) -- 0, we wish 

to find a sequence r~, n > 1, of functions of the form (1.1), with the property: 

(1.4) Ir~(x)] < Ce -n~(x), O < x < l, n > l. 

Under what conditions on 7~ do there exist such r~ ? We also consider a weaker 

property, namely 

(1.5) }r~(x)l < e ° ( ~ ) - ~ ( ~ ) ,  0 < x < 1, ~ > 1, 

where o(n) is uniform in x. Still weaker, is the property: 

(1.6) Ir~(x)l _< Ce -c"~(~), O < x < l, n >_ l 

for some positive constants C, c. 

The existence of rn satisfying (1.6) is settled by 

THEOREM 1.1: Let 7~ E C[0,1],~(0) = 0. Then there exist rn with property 

(1.6) i f  and onIy i f  

(1.7) f ~(X)d~ < ~. 
J0 x 

This result was proved by V. Maimeskul and the authors in [8]. (Although not 

stated explicitly, it follows from Lemma 3.1 and Theorem 4.2 in [8].) The proof 

also provides an estimate for a constant c in the exponential term of (1.6). For 

example, if ~ is increasing on [0, 1], one can set 

c = ~ ( 2  - k  . 

k k=O ) 
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However, the me thod  of [8] is not suitable for producing sharp  est imates .  

In this pape r  we utilize a potent ia l  theoret ic  approach  tha t  yields best  possible 

es t imates .  The  me thod  is similar to one used by V. Totik in his pape r  [16] on 

fast decreasing polynomials ,  and it is based on a s tudy  of a cer tain equi l ibr ium 

problem.  In our case, the problem is the following one. 

Given a measure  it > 0 in D := {z E C : Re z > 0}, let 

(1.8) U~(z) := f log z + z - t  dit(t), z E D  

denote  the  Green  potent ia l  of it. Find it of total  mass  Ilittl = 1, with suppor t  

S(it) C_ [0, 1], t ha t  satisfies, with some constant  %:  

(1.9) U~ - cp = ctL on S(it), 

(1.10) U f f - ~ > c u  on[0,11 . 

Note t ha t  this is a non-s tandard  "singular" problem,  since [0, 1] touches the  

bounda ry  of D. Another  complicat ion is tha t  the condit ion (1.7) allows ~ of the 

form 

( ~o(x)= log a >  1, c >  1. 

Such a ~o has an integrable derivative but  ~o ~ is not in Lp[0,1], for any 

p > 1. Therefore,  known results concerning the density of it (cf. [9], [16]) are 

not applicable.  

T h e  relevance of the  above equil ibrium problem is obvious: given a polynomia l  

Pn(z) = f l  (z - Cj), 
j = l  

we may  write 

where 

and 6~¢ denotes  the  uni t  point  mass  a t  4j. 

formula ted  as 

I Pn(z)iP.(-:)1= exp (-num.(z)), 

rl 

j=l 

Then  the p roper ty  (1.5) can be 

(1.11) U;~(x) - ~(x) >_ o(I), x E [0, i] 
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while (1.4) becomes 

(1.12) Ug'~(x)-  ~o(x)>_ O(n-1) ,  x e [0, 1]. 

Thus,  our goal is to describe ~ for which c~ of (1.9) is zero; for then, on 

discretizing #, we may hope to get rn of the form (1.1) tha t  satisfy (1.4) or (1.5). 

The  paper  is organized as follows. In the next  section we collect some auxiliary 

results. In particular,  a generalization of Mhaskar-Saff 's  F-[unctional is given. 

In Section 3 we show tha t  the problem (1.9), (1.10) has a unique solution, and 

then we prove 

THEOREM 1.2: Given ~ E C[0, 1], ~(0) = O, let U~, c~ be as in (1.9). Then the 

following statements are equivalent: 

(i) There exist rn ,n  > 1, satisfying (1.5); 

(ii) there holds 

2 fo 1 dx < (1.13) -fi (U;(x) - e•) xx/1 - x 2 - 1; 

(iii) c,=0. 

Of course, it is desirable to have a condition in terms of ~. The  necessary 

condit ion is immedia te - - i f  we have (1.5), then c~ = 0 by (iii), so tha t  ~o <_ U~ by 

(1.10). Then  (1.13)implies  tha t  

2~01 dx < 1. 
(1.14) ~ ~(X) x v ~ _ x  2 - 

In many impor tan t  cases this condition is also sufficient. In Section 4 we prove 

(compare with Theorem 3.3 in [16]) the following. 

THEOREM 1.3: Let ~ E C[0, 1], ~(0) = 0, and assume additionally that ~ is 

increasing and concave on [0, 1]. Then there exist r,~, n >_ 1, with property (1.5) 

if  and only i f  (1.14) holds. 

In Section 5 we consider the stronger proper ty  (1.4). Here we need to analyze 

the density of the equilibrium measure #. In doing so we impose ext ra  conditions 

on ~ tha t  ensure a regular behavior of #~ near 0. Assume tha t  for x small enough, 

(a) x(p~(x) is increasing; 

(b) for some ~ > 0, x~'(x)  < (1 - 5)~o(x). 

Then  we have 
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THEOREM 1.4: Let  ~ be as in Theorem 1.3, and assume that  ~ satisfies (a), (b) 

for x small  enough. Then there exist rn, n > 1, with proper ty  (1.4) provided 

strict  inequali ty  holds in (1.14), i.e. 

2 fo 1 dx 
(1.14') ~ ~v(x) xx/1 - x 2 < 1. 

Remark:  Many important  functions, like x ~ , a  < 1, or ( l o g c / x ) - ~ , a  > 1, sat- 

isfy (a) and (b) above. Moreover, applying a finer discretization technique (cf. 

[7], [17]), one can replace (1.14') by (1.14), at least for the case ~(x) = cx" ,  a < 1. 

Finally, we apply our results to rational approximation of ]x]. It is well-known 

that  the error in best approximation of Ix I by rational functions of order n behaves 

like exp(-~rx/~ ) (cf. [19],[14]). However, the best approximants do not converge 

to Ix[ geometrically fast on any subinterval of [-1,  1] (cf. [12]). In [8] near best 

rational approximants R,~ were constructed with the property 

(1.15) I1 1 - Rn(X) l ~- C e x p { - c l v ~ -  • e [-1,  1]. 

Tile same method shows that  cl can be chosen arbitrarily close to % but no sharp 

est imate of c2 was given. Here we prove a more precise result. 

THEOREM 1.5: Let  qo be a continuous increasing function on [0, 1] with ~(0) = O. 

Let  0 < c < 1, and assume that a sequence {R~},n  _> 1, exists  such that for 

x e [ - 1 , 1 ]  

I 1- R.(x) _< (1.16) 

Then 

(1.17) 2 L ~ dx < 
- x 2  - 

In particular, i f  ~ = O, then ~ = 0 so that geometric  convergence is not  possible. 

Conversely, i f  strict  inequality holds in (1.17) and ~ is as in Theorem 1.4, then 

there exist  {R~} satisfying (1.16). 

2. Auxi l iary results 

We star t  with a simple observation. Let E be a compact set in the open right 

half-plane D, and l e t /~  := { - ~  : z C E} be its reflection about the y-axis. The 
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pair  (E, /~)  is calh/d a (symmetric) c o n d e n s e r .  Given a positive measure # on 

E,  define ~ on E,  by symmetry.  Then  the Green potential  of # can be wri t ten  

as an ordinary logarithmic potential  of the signed measure # - ~ : 

gg(z)=flog z+Z f 1 • ~ d# ( t )  = log ~ d(p - ~)(t). 

With  this observation in mind, the classical result of T. Bagby [2] can be s ta ted 

as follows (see also [20] or [13, Section II.5]). 

There  exists a unique positive measure WE on E,  of total  mass ]]WEII= 1, such 

tha t  

1 1 
U ~  - capgE 2 c a p ( E , E ) '  q.e. on E (2.1) 

and 

(2.2) 
1 

UgE <-- capgE '  in C. 

(As usual, q.e. means "except for a set of zero logarithmic capacity.") The  

measure WE is called the e q u i l i b r i u m  m e a s u r e  (or distribution) on E relative 

to D, and the constant  capgE is called the G r e e n  c a p a c i t y  of E relative to D 

(it also coincides with the capacity of the condenser formed by E and the y-axis). 

In part icular ,  for E = [e, 1], 0 < E < 1, we have (cf. [11) 

(2.3) 1 _ rrK(e) 
capgE K ' (e )  ' 

where K(g) ,  K ' ( c )  denote the complete elliptic integrals for moduli  c, x / 1 -  g2  

respectively. The  equilibrium measure co[e,1] =: WE is given by 

1 }-1/2 
(2.4) dwE(t) -- K'(e) {(1 - t2)(t 2 - e 2) dr, t e [e, 11. 

Next,  we shall need a maximum principle for Green potentials (cf. [13, Section 

II.5]). We state  it for the special case S(#) C [0, 1], since this will suffice for our 

purposes,  and the proof in this case is elementary. Indeed, it is easy to see tha t  

< Re-eT-~-t' R e z > O ,  I m z ¢ O ,  t > O ,  (2.5) 

and 

(2.6) 
z + t  l + t  

< t '  R e z > l ,  0 < t < l .  
z - t  1 -  
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Therefore,  U~ at tains its maximum in D only on [0, 1]. Since U~ is convex on 

any subinterval  of [0, +oo)  \ S(#) ,  we obtain that  

(2.7) U~(z) <_ supU~',  z E D, S(/~) C_ [0,1]. 
s(~) 

Moreover, the max imum principle for harmonic functions shows that  strict 

inequali ty holds for z ~ S(tt), unless S(#)  = {0}, in which case U~ --- 0. 

We are now in a posit ion to prove an impor tant  result tha t  can be viewed as 

a s t rengthened version of Newman's  inequality (1.2). 

LEMMA 2.1: Let ~ be the measure on (0,1) given by 

2 dt 
(2.s) d~(t) - ~2 t x¢i-c~_t 2, t e (0, 1) 

(note that Ilatl = oo). Then 

(i) 

(2.9) U~(z) -= 1, 

U; (z) < I, 

z E (0, 1], 

z • D"-(O, 1]. 

/ U~da = I[tt][- #{0}, if  S(#)  C_ [0, 1]. 

(i) F o r O < E < l ,  set 

Is(X) :~- ~l,logl~[x+t { ( 1 _ t 2 ) ( t 2  _~2)}-1/2dt" 

Then  (see (2.1), (2.3), (2 .4) )  for c > 0, we have 

I~(x) = ~K(c) ,  5 < x < l. 

Since K(E) --~ ~r/2 as ~ --~ 0 (cf. [1]), equat ion (2.9) will follow provided we can 

show tha t  IE converges to I0. Fix 0 < x < 1 and write, for e ~ x/2,  

/~ = + =: h i  + I~2. 
~ /2 

(2.11) 

and 

(2.12) 

Proof." 

(2.1o) 

Furthermore, 

(ii) for any positive finite measure # in D with S(#) C D, we have 

f U~"d~ <_ ll.lL 
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The integrand in Ie2 is decreasing as e -+ 0, so the monotone convergence theorem 

applies. In It1, we make a substitution t 2 = x2s/4 + c2(1 - s). Then 

~00 
1 ds 

It1 = X/(x2/4) - ~2 ¢(t)  v/~, 

where 
x 2 1 , x + t  1 t 2 = ~ - s + E 2 ( 1 - s ) .  ¢(t) :=  ,og 

Since ¢( t )  is bounded on (0, x/2], we may appeal to the bounded convergence 

theorem. Consequently, (2.9) holds and then (2.10) follows by the maximum 

principle. 

(ii) By the Fubini-Tonelli theorem, 

so that  (2.11), (2.12) follow from (2.9) and (2.10). | 

We turn now to the equilibrium problem in the presence of an external field. 

Given a continuous real-valued function p on a compact set E C D, with 

cap E > 0, then it is known (cf. [13, Section II.5]) that there exists a unique 

measure # on E, having total mass 1 and such that, with some constant c~, 

(2.13) Ug u - p _< c ,  on S(#), 

(2.15) 

Then 

(2.14) U~ - p >_ c ,  q.e. on E. 

Now, let K be a compact subset of E (of positive capacity). Integrating (2.14) 

against the equilibrium measure wK, we obtain (recall (2.1)): 

1 

For K = S(#) the opposite inequality holds (integrate (2.13) against 02 K and 

apply (2.1), recalling that sets of zero capacity have zero wg-measure). We have 

thus proved the following. 

THEOREM 2.2: Define, for any compact K C E, 

F(K)  . -  1 + f P dwK. 
capoK J 

max F(K)  = F(S(tt))  : -ct~. 
K 
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Remark: The F-functional 

F(K) = log(cap K) - / Q dwg 

(note: cap not eapg) was introduced and studied by Mhaskar and Saff [10] in 

connection with the equilibrium problem for logarithmic potentials of positive 

measures. Theorem 2.2 is an extension of their result. (Our ~ is :-Q in the 

notation of [10].) Note that this can be extended further to the non-symmetric 

case .  

We conclude with two observations. Let E be a regular compact set (e.g., a 
segment) in D, let v be any measure in D, and assume that, for some continuous 

on E, the relation U~ - W _ c holds q.e. on E. Then it must hold everywhere 

on E (cf. [16, p.138]). 

Next, since 

U~(z) = / lOg lz~ldV(t) + u(z), 

where u is harmonic in D, the principle of descent and the lower envelope theorem 

(cf. [15, Appendix[, [6], or [18]) can be applied to U~. 

3. T h e  equ i l i b r i um p r o b l e m  

Let E~ := [~, 1]. We have seen in Section 2 that there exists unique #~ on 

[e, 1], [1#~[[ = 1, such that 

(3.1) U~ ~ - ~ = c~, on S(#e), 

(3.2) U~'-~>>_c~, on [e, 1], 

where ce is some constant. We now show that, as e -+ 0, /t~ approaches the de- 
sired equilibrium measure #, that satisfies (1.9), (1.10). Integrating (3.2) against 
dt/t we obtain 

c~+min~p~[~,~] j l °g~-  < e -  U~E(t)~ = / ~ T d#e(x) <_ --'2 

In the last step we used Newman's inequality (1.2) and the fact that  I1~11 = 1. 

Since ~ is continuous and ~p(0) = 0, we obtain, on letting first e ~ 0 and then 

5 -~ O, that 

limsupc~ _~ O. 
e--+O 



134 A.L. LEVIN AND E. B. SAFF lsr. J. Math. 

On the other hand, as Ug ~ _> 0, inequality (3.1) shows that  ce is bounded from 

below, by - max[0,11 ~. 

Now, let # be any weak-star limit of {p~}. Passing to a subsequence we may 

assume that  ce ~ c ,  _< 0. 

Applying (in D) the principle of descent to (3.1) and the lower envelope theo- 

rem to (3.2), we obtain that  

v $  - ~ <_ c .  on S(/t) \{0} ,  

q.e. on [0, 1]. 

The second relation holds (see the end of Section 2) everywhere on (0, 1], and as 

c ,  _< 0 it also holds at 0. The first relation holds at 0 if 0 is an isolated point of 

S(#),  since then U~ must be continuous at 0. In the opposite case we have 

c ,  > liminf(Ug ~ - ~) > 0. 
- x - -+0  

x e s ( t , )  

Thus, c ,  = 0 and again U~ - ~ = c~, at 0 E S(p). Therefore we finally obtain 

(3.3) U$ - ~ = c, ,  on S(#), 

(3.4) U ~ - ~ > _ c ~ ,  on[0,1].  

Being a weak-star limit of unit measures, # is also unit, and the existence of the 

solution of problem (1.9), (1.10) is established. 

Remarks: (a) It may happen above that  # has a mass at 0. For example, if 

- 0, then c~ must be 0 (since U~ >_ 0, % < 0), and then (3.3) yields U~ = 0 

on S(p).  By the maximum principle, U~ <_ 0 in D, so that  U~ is identically 0. 

Therefore, the corresponding # is a unit mass placed at the origin. 

(b) By (3.3), Uff is continuous on S(#); hence ([18, Theorem III.2) it is continuous 

in C, except perhaps at 0. Now, if 0 is not a limit point of S(#),  this potential  

is obviously continuous at 0. In the opposite case, cu = 0 and (3.3) shows tha t  

limx-~0+ Ug"(x ) = 0. Then we have limz-~0, zED Ugh(z) : 0 by the same argument  

that  was used in the proof of the maximum principle (2.7). Finally, as U~(-z)  = 
U~(z), we obtain that  U~ is continuous in C. 

Next, we prove the uniqueness of/~ above. This follows from a more general 

result that  shows that  U~' - c~ is the least superharmonic majorant  for T, in the 

class of all majorants  of the form U~" + const, I[v][ < 1. 
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LEMMA 3.1: Let tt satisfy (3.3), (3.4), I[#li = 1. Assume that U~ - a >_ ~ on 

[0, 1], where [[L,[I ~_ 1 and a is a constant (necessarily, non-positive). Then 

(3.5) ~ < U ~ - e  u <_ U y - a  on[O, 1]. 

Proof: We consider two cases. 

CASE I: a ~ c~. 

Let  tt = U~ - Uff. h is superharmonic  in D \ S(#) ,  bounded from below (Ug _> 0 

while U~ is bounded)  and satisfies 

l im in fh  > 0. 
z~OD 

On S(#)  we have 

h = U g - U g  ~ -- ( U g - v ) -  (Ug~-~)  >_ a - c ~ .  

Now, since U.~ is continuous, h is lower semicontinuous. Hence, 

l iminf  h(z) >_ h(x) >_ a - c ~ .  
z~x E S(tL) 

Applying the minimum principle for superharmonic  functions, we conclude (as 

a - c ,  < 0) tha t  h >_ a - c ,  in D, and (3.5) follows. 

CASE II: a > ct,. 

Then  the same reasoning as above gives h > 0 in D. Next, since a < 0, we see 

tha t  c ,  < 0, so tha t  0 ~ S(#). By Lemma 2.1 (apply (2.12) to # and (2.11) to 

•) we obtain,  as h _> 0 and [l'H -~ I1#1[ : 

0 >  I,.,, - I,.ll _ > / ( u $ -  h d a > _ ( a - c , ) ~  d a > O  
(,) (,) 

and we have a contradict ion.  Thus, Case II is impossible, and the lemma is 

proved. | 

We now proceed with the 

Proof of Theorem 1.2: (i) ~ (ii) Assume (1.5) holds. This means (see (1.11)) 

tha t  with [l'nll <- 1, the relation U ~ ( x )  - ~(x) >_ o(1) holds uniformly for 

x • [0, 1]. L e t ,  be any weak-star limit of ~n. Then  U~ > ~ on [0, 1], and L e m m a  

3.1 yields U~ - c~ < U~. Integrating this against da (see Lemma 2.1 (ii)), we 

obtain (1.13). 

(ii) ~ (iii) This  is obvious since otherwise the integral in (1.13) diverges. 
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(iii) ~ (i). Here we know that  ~o <_ U~ on [0, 1], Ug is continuous, S(#)  c_ [0, 1] 

and II~ll = 1. W e  need to construct  un, I]~nll __ 1, such that  (1.11) will hold. We 

follow the reasoning in [9, pp. 40-43]. Assume first that  #{0} = 0, and define 

O = to < tl < " " < tn = l by 

(3.6) d / z = - ,  k = l , 2 , . . . , n .  
-1 n 

Let  vn be a measure having a mass 1/n  at  each t j ,  1 < j < n. Fix x E [0,1] 

and let t j -1  < x < tj, for some j .  Since logl(x + t ) / ( x  - t)l is increasing on 

[0, t j -1]  and is decreasing on [tj, 1], a simple est imation gives 

(3.7) U~,(x)  2 Ugh(x ) -  - l ' ° g  ~ d#(t).  

If t E [tj-1, tj] satisfies I t -  x I > n -1, we have 

log x + t < log (1 + 2n), 

so tha t  the integration over such t 's will contr ibute O(log n / n )  to the integral in 

(3.7). If we can show tha t  

i t  ' ' x + t l  (3.8) -xl_<~ -1 log ~ dl~(t) = o(1), n ~ oo 

uniformly for x C [0, 1], we are done because (3.7) then gives 

Ug h > Ug"-O(1)  _> ~ - o ( 1 ) ,  on[0,1]  

as required. 

Assuming (3.8) is false, one can find x e [0, 1] and a sequence xn --~ x such 

tha t  

i t  log xn + t (3.9) - ~ l _  <n-I ~ d#(t)  >_ a > O, n >__ 1. 

Now let ~ > 0. Since x,~ --4 x and the integrand in (3.9) is nonnegative,  we only 

s t rengthen (3.9) if we replace the range of integration by I t - x I< ~, provided n 

is large enough, i.e. 

/, I (3.10) -~1<~ ~ d#(t)  >_ a, n > n~. 
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Next,  as it has no point  masses, we can select (f so tha t  

f i t  log x + t a -xl>_~ x - t  d#(t) > Ug(x) 2" 

For n large enough, we can replace x by xn in the integrand, thereby changing 

the integral  by o(1). Then,  on adding the resulting inequality to (3.10) we obta in  

OL 
Vg~(Xn) ~ Ug(x) -~ ~ -- o(1), n > n~, 

contradic t ing the continuity of U~. 

Finally, if #{0} := 1 - p > 0, define itp on (0, 1] by itp := it/p. Then  we obta in  

a unit  measure  and,  by the preceding argument ,  we have a s t ronger  result  with 

~o replaced by U~ °. 1 

4. P r o o f  o f  T h e o r e m  1.3 

Let  

2 ~o 1 dx 
(4.1) p :-- ~-~ ~(x)  xx/1 - x 2" 

Recall t ha t  the condit ion p _< 1 is necessary for (1.5) to hold. Thus,  in view of 

T h e o r e m  1.2, we only need to show tha t  if p _< 1 and ~ is increasing and concave, 

then c t, = 0. We will prove a s tronger  result, par t  (ii) of which will be  used in 

Section 5. 

THEOREM 4.1: Let ~, p be as above, and assume that 0 < p < 1. Then 

(i) the equilibrium potential U~ satisfies 

(4.2) U~ -- ~, on [0, 11. 

Moreover, S(#)  = [0, 1] and it has a mass 1 - p at O. 

(ii) Let  fi denote the restriction of it on (0, 1] (so that (4.2) holds with it replaced 

by ~). Then ~t is absolutely continuous with respect to dt, and its density is given 

by 

~01 qJ(S) 82)1/2 (4.3) v(t) = ~2t(1  - t2) -1/2 P V  t b ~ s  2 (1 - ds, 

for a.e. t E [0, 1]. 

Proof." (i) Proceeding as at  the beginning of Section 3, we get a unit  measure  

ite on [e, 1] tha t  satisfies 

(4.4) U~ ~ - ~0 -- c~, on S(it~), 
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(4.5) U~ ~ - ~ > c ~ ,  on[c ,  1]. 

Recall tha t  we have shown that  lim~-40 c~ - c ,  _< 0. 

Now, let I be an interval in the complement [e, 1] \ S(#~) with endpoints  

belonging to S(#~). Then  U~ ~ is strictly convex on I while ~ is concave. Since 

(4.4) holds at the endpoints  of I, (4.5) is violated inside I. Thus, there is no such 

I,  which means tha t  S(#~) is an interval, say [a~, b~]. Next, (4.4) holds at bE, and 

U¢ ~ is decreasing for x > b~. Since ~ is increasing, be must be equal to 1, since 

otherwise (4.5) is false on (b~, 1]. So, S(tt~) = [a~, 1]. Now, by Theorem 2.2, c~ is 

given by 

1 { f~  1 } -c~ = F([a~, 1]) - K'(a~) ~(t)  {(1 - t2)(t 2 - e2)} -1/2 dt - 7rK(a~) , 

where we used (2.3), (2.4). 

Let  I~ denote  the integral in { }. Put t ing  t 2 = s + a~(1 - s) we obtain that  

fO ds ~O( v/t ) I ~ =  ¢ ( s + a ~ ( 1 - s ) )  ~ ,  ¢ ( t ) . - -  2 ~ - "  

Since ~(0) = 0 and ~ is concave, we have v q p ' ( v ~ )  < ~(v/t) ,  which means tha t  

~( t )  is decreasing. Therefore,  

fo 1 ds ~01 dt 7r 2 
i~ _< ¢ ( s )  v ~  - s) ~( t )  t , / 1  - t2 -< 2 ' 

by our assumption p <_ 1. On the other  hand, 7rK(a~) > 7r2/2. Thus,  c~ > 0 and 

we have 

0 > c t, = l imcc > 0. 
- -  e - ~ 0  - -  

Hence, c ,  = 0, so tha t  U2 - 9 = 0 on S(p).  Since U~ - ~ = 0 at 0 as well, the 

same reasoning used for tt~ shows tha t  S(#)  = [0, 1]. Thus, (4.2) holds. Recalling 

the definition of p we obtain from Lemma 2.1(ii): 

f = f g¢d  = I I , l l - , ( ( 0 } ) =  P 

(ii) We use the method  of [9], but  care must be taken near 0, since ~o' may  not 

be in Lp[O, 1],p > 1. So let us consider 

/ V(x)' x E Is, 1] 
(4.6) 

z ~(~) x ~  [O,c], 
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which is bounded.  Next,  extend ~ to [ -1 ,  0] as an odd function. Then  we may 

apply the known result (cf. [9] or [13, Ch. IV.3]), which asserts tha t  the function 

(4.7) %(t) := -~V 1 - t  _ T s  t - - -sds  + x / 1 - t  ~ 

is defined a.e. on [ -1 ,  1], belongs to Lp[-1 ,  1], 1 < p < 2, and satisfies (with any 

choice of a constant  A): 

f/  1 (4.8) log v~(t)dt ~- ~pc(x) -~- CA, x E [--1, t]. 
1 

Remark: It is assumed in the above references tha t  the function ~ ( - f ,  in their  

notat ion)  is even, while our ~e is odd. However, this assumption was used for 

purposes o ther  than proving (4.7), (4.8). 

Since we want to re turn  to Green potentials,  we choose A to ensure tha t  v~ is 

odd. Set 

1 f /  ~ / ~ - s  ~:(s)ds A := ~ 5 PV  -+ s s 
1 

(since qo~ = const near 0, the PV-integra l  exists). With  the above choice of A, 

we have 

1 f l  l _ _ s t ( ~ _ _ ~ _ t  ~) 
v~(t) - ~v~l _ t 2 e v  1 ~  ~(s) - 8 +  ds, 

~(t) ~-t~ Py , ~  ~(~)t-~ d~ 

2t fo 1 (4.9) -~2~/1 t2 PV ~ ~'~(8) _ _  t 2  _ _  82 ds, 

where, in the last step, we used the evenness of ~'~. Thus,  v~ is odd. Then  the 

integral in (4.8) is also odd in x, and so is ~ .  Hence, Ca = 0 and applying the 

oddness of v~, we may rewrite (4.8) as 

(4.10) f '  log x + t ve(t)dt = pc(x), x E [0, 11. 
J0 I~--~- tl 

Next,  we verify that  ve > 0 on (0, 1). A s tandard  calculation shows tha t  

fo ds 7c (4.11) PV X / 1 - s  2 t2_82 - 2' t E ( - 1 , 1 ) \ { O } .  

that is, 
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Therefore  ve can be wri t ten (use the second relation in (4.9)) as: 

_ 1 t~'~(t) 2t f l  - ' t 
7r ~ + 7 r 2 ~  ]o ~ ~o~(s)t 2 - s 2~e( ) ds" (4.12) v ¢ ( t )  

Since ~ is positive and nonincreasing on [0, 1], both  terms in (4.12) are positive; 

hence % > 0. 

Now, define #~ _> 0 on [0, 1] by d#e(t) := v~(t)dt. (The present #e should not  

be con[used with the one tha t  appeared before.) Then  (4.10) and Lemma 2.1(ii) 

yield 

Let  ¢ --+ 0, and let fi be any weak-star limit of #~. The  usual reasoning gives (as 

~ -+ ~o) tha t  U ~ = ~ on [0, 1]. Since ~ $ ~, we obtain 

(4.13) H~]I = lim ]]#~[] = = p 
~--~0 J 

(see (4.1)). The  uniqueness of the equilibrium measure then shows tha t  

coincides with ~ as defined in Theorem 4.1 (the restriction of # on (0, 1]). To 

complete  the proof, it remains to show that  v, as given by (4.3), is the limit of 

%, in LI[0, 1]. Note tha t  the existence a.e of the integral (4.3) follows from the 

established existence of the corresponding integral (4.9), and as ~ = ~ on [c, 1]. 

Exac t ly  as we deduced (4.12) from (4.9), we may write v in the form 

1 t ~ ' ( t )  + 2t f l  s ) -  ~ ' ( t ) .  
(4.14) v ( t )  

1 Now, fix 0 <: 5 < 1/2 and rewrite (4.12), for t E [5, 1 - 5] and E < 55, in the form 

v~(t) - t~'(t)~r~ + Tr2~2t ( ~ l  ~ ~'(s) -~ ' ( t )  d s t  2 - s 2 

~0 e ¢-1~(¢)  - ~ ' ( t )  ) 
+ , 

where we used the definition (4.6) of ~ .  

As E ~ 0, the second integral is O(~o(e)) --+ 0, uniformly for t • [5,1 - 5]. 

The  first integral is increasing to the integral in (4.14). Since f01 ve = II#~l[ are 

uniformly bounded  (see (4.13)) we conclude tha t  v • L115,1 - 5], tha t  

1-5 r 1-5  / *  

(4.15) [ v - - l i m  [ v~ _< C, 
Y~ e -+ O ,]5 
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and that 

1--8 

(4.16) ~ Iv - v~l --+ O, E .+ O. 

141 

Since (4.15) holds for any 5 > 0, we obtain that v C LI[0, 1]. Therefore, 

(/o + v -+0, 6 - + 0 .  
- 5  

The same is true for ve, uniformly on e, as (4.13) shows. Combined with (4.16) 

this gives: v~ -+ v in L1 [0, 1], and the proof is complete. | 

5. P r o o f  o f  T h e o r e m  1.4 

We first show that the extra conditions (a), (b) of Theorem 1.4 ensure that,  for 

some C1, C2 > 0, 

(5.1) C1 <_ v(t) t/~a(t) <_ C2, t small, 

where v is defined in (4.3). Extend ~ to [-1, 1] as an odd function and rewrite 

(4.3), using the evenness of ~o': 

t P y  ~ ~ ' ( s )  as 
1 t - s s  v(t) - ~ 2 , / f _  t2 

With the aid of 
t 1 1 

(t - s)s t - s s 

we further rewrite v as follows: 

. ( t )  - 1 [~ 
7r21~/-~2-~_t2 P V  J -  ~ ~p'(s) ds, 

1 t - s  

since the integral involving 1/s vanishes because the integrand is an odd function. 

Next, write 

V/ i - - s2  = V / 1 - t  2 + ( V / 1 - s  2 -  V/i--  t2). 

Then we obtain 

(5.2) 

where 

1 f11~p ' (s ) -  
v(t) = -~  P V  t -  saS + - -  

B( t )  

1 ~ ' ~  t ~' 

0 < B ( t ) <  ct, t 6 (0,1]. 
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Now express the integral in (5.2) as 

J /  qo'(s) + qo'(t) log z S ( t )  1 + t .  

i t - 8 1 - t 

The second term is positive. Also, 

i t  ~- f l  ~- 2t l 1 9 9 ' ( s ) - ~ ° ' ( t ) d s  82 
1 .It 

as ~o' is decreasing. Furthermore, 

/o t = 2t ~ - _  f i  d8 > 

> 7 [~ ' ( s )  - ~ ' ( t ) ] d 8  - 

o * ~ ' ( s )  - ~ ' ( t )  

~(t) ~'(t) > a~! t) 
t t 

Isr. J. Math .  

Also, 

+ = 2t t ~-_ ~,2 as < o. 
t t - -  s d2t 

L° qd(S)ds < - ~o'(s)ds = < qo(2t) 2~(t) 

2t t - s t 2t t t 

by concavity. Finally, 

[2~ ¢ (8)  d8 = /]~ ¢(+ - ¢ ( t )  ~8 = -1 [ ~  ( t -  8 + 8)~'(8) - t ¢ ( t )  d8 
P V  t - s  t - s  t I5 - s  

J U  

l fo2tSqO'(s)-tqo'(t) ~ 
= v ( 2 t )  + 7 t s < ~o(2t), 

since the integrand is negative, by the assumption (a). Thus we have the second 

inequality in (5.1). 

We can now proceed with the 

Proof of  Theorem 1.4: We have to construct a measure u~ having a mass 1/n 
at some t l , . . .  ,t,~ and such that (see (1.12)) 

C 
Uj ~ >_ q o - - ,  on[O, 1]. 

n 

by tile assumption (b), provided t is small. Collecting all estimates, we get the 

left-hand inequality in (5.1). 

Now we return to the integral in (5.2). We have 
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Consider the function (1 + e)p. Since strict inequality holds in (1.14'), there 

is e > 0 such that 
2 . f l  dx - 1. 

~--G_~ (l+¢)~z(x) x V I - x  2 

By Theorem 4.1, the equilibrium measure # for (1 + e)~ has no mass at 0 and it 

satisfies U~ = ( l + e ) ~ o n  [0,1]. Let 0 = to < t l  < . . .  < t ,  = 1 andun  be as 

in the proof of Theorem 1.2. The relation (3.7) now becomes 

ftt] ~ I x + t U , ~ n ( x )  ~ ( l + ¢ ) ~ ( x ) -  log ~ d#(t), x E  ( t j_ l , t j ) .  
l 

Thus, our task is to show that 

~tj tJ 1 
(5.3) log x + t c 

x -  t d#(t) <<_ e~a(x) + -n 

for some C and for all x E ( t j - l , t j ) ,  j = 1, . . .  ,n. We have already shown that  

the above integral is o(1) uniformly in x E ( t j_ l , t j )  and in j .  Therefore, (5.3) is 
obvious for x _> 5 (any 5 > 0) provided n >_ n(6), and we may only consider the 

case t j -1  < x < tj < 5, where (a), (b) hold. 

By the lower bound in (5.1) and by concavity of qD, 

1 jfti3 1 / i J  qa(t ) l j f t l J  * 1 - - v(t)dt  > - -  dt > - -  ~'(t)dt  = ( ) 9 ( t j )  --  (p(tj-1)). 
r~ - -  1 - -  Cl - 1 ~ - -  C i  

Therefore, for tij 1 < X < t j ,  

C1 
(5.4) max ~a = ~(tj)  < ~ ( x ) + -  

[ t j _ l , t j ]  - -  17, 

uniformly in j ,  provided t j  < 5. Next, 

log x - t  ~ ~- tv2(t)dt 
1 - -  - - 1  

The first integral is bounded by an absolute constant (put t = z-x). The second 

is bounded by 

max { tv( t )}}  < c2ft -1/2 nlax ~(t)  1/2 
[tj_l,tA - [tj_l,ql 

<_ ca [n-1/2(fl(x)l/2 + n - l ] ,  
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where we used the definition of tj's, the upper bound in (5.1) and, in the last 

step, (5.4). Since for any c > 0, 

< + c.__~_~ 
- 4~n ' v n  

the bound (5.3) follows. | 

6. R a t i o n a l  a p p r o x i m a t i o n  of  sgnx  and  Ix I 

Throughout this section, r~ denotes a function of the form (1.1), while Rn denotes 
some rational function of order n, not necessarily of the form (1.1). 

We start with a temma that is due to D. Newman [11], except for a minor 
modification. 

LEMMA 6.1: Let 5n denote a positive function on [0,1]. 
(i) Assume that 

(6.1) [Ix[ - R,~(x)[ <_ 5n([x[), x C [-1,1]. 

Then there exists rn that satisfies 

(6.2) xlr~(x)l <_ 25n(x), x • [0,1]. 

Moreover, we may assume that a11 zeros ofr~ lie on (0,1]. 
(ii) Assume that 

(6.3) I s g n x -  R~(x)l < 5n(Ixl), x • [-1,1]. 

Then there exists rn such that 

(6.4) I,',~(x)l _< 25~(x), x • [0, 1]. 

(iii) Assume that rn satisfies (6.2) and, additionally, 

1 
(6.5) 1 + r,~(x) >_ -~, x • [0, 1]. 

Then there exists Rn that satisfies (6.1) with 5n replaced by 45n. Similarly, if 
rn satisfies (6.4) and (6.5), then there is R,~ satisfying (6.3) with 5,~ replaced by 

45~. 

Proof: (i) If Rn is even, (6.2) follows from [11], with factor 2 dropped. For 
arbitrary R~ := p,~/q,~, we may assume qn > 0 on [-1,1]. Then (6.1) implies 

q , (x )+q ,~( -x )  I <- q~(±x) I <5~(x)'- 
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for x E [0, 1]. Therefore, with 

~n(X) :~-- pn(X) -}-pn(--X) 
q (x) + 

we have Ix - Rn(X)I <_ 2(in(X), X E [0, 1]. Since/~n is even, we may continue as 

in [11]. 
Next, let I(x - { ) / ( x  + ~)1 be one of the factors of Irn[. In view of (2.5), (2.6) 

we only s trengthen (6.2) if  we replace { E D by a suitable ~ E (0, 1]. For { ~ D, 

the above factor is >_ 1 and we may drop it. 

(ii) This follows easily from (i). 

(iii) See [11]. | 

To ensure (6.5) for r~ satisfying (1.4), a small adjustment  is needed. Let 

Ir (x)l _< c e  x • [0,11. 

Assuming qo is increasing, define 0 < an < 1 by nqo(a,~) = log2C. Now, if r~ has 

a zero, {, on (0, c~,~) we replace it by an. Since 

X --OL n X - - ~  

we see tha t  a new rn still satisfies (1.4) on [an, l]. On [0, an], [rnl _< 1 while 

C e x p ( - n ~ ( x ) )  _> 1. Thus (1.4) still holds with C replaced by 2C. Therefore a 

new r~ satisfies (1.4) and also (6.5). Wi th  these preliminaries, the following result 

is an immediate  consequence of the necessary condition (1.14) and Theorem 1.4. 

THEOREM 6.2: Let  qo be continuous and increasing on [0, 1] with qo(O) = O. 

Assume  there exist R ~ , n  ~_ 1, such that  

(6.6) I s g n x - R n ( X ) l  <_ Cexp(-n~o(x)) ,  x • [-1,1].  

Then ~o satis/ies (1.14). 

Conversely, if  strict inequality holds in (1.14) and ~o is as in Theorem 1.4, then 

there exist R~, n > 1 satisfying (6.6). 

We now turn to the approximation of Ixl. 

Proof  of  the second par t  of Theorem 1.5: Given ~ > 0, let n be large enough. 

Since ~p satisfies (1.17) with strict inequality, (1.14') holds for e-l~o. Hence there 

is an r[n~] such tha t  

< -< c e-% on [o, 1]. 
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Next, put  p := In(1 - E)]. Then  (el. [191) there is an rp such tha t  1 + rp >_ ½ on 

[0,1] and 

Xlrp(X)[ <_ c2e -~'/p. 

1 Note tha t  cl,  c2 are independent  of n. Since ]rind] -< 1, we have l+rpr[nel  >_ ~ on 

[0, t]. Then  Lemma 6.1(iii) yields R~ of order p + [ne] < n that  satisfies (1.16), 

with a constant  independent  of n. | 

Proof of the/~rst part of Theorem 1.5: Assume (1.16) holds. Since ~v is increas- 

ing, ~ > 0 on (0, 1]. Then,  applying Lemma 6.1(i), we get r~ that  satisfy 

(6.7) 

and also 

(6.8) xlrn(x)l <_ ce - ~ ( ~ ) ,  x e [0,1]. 

Fix r / > 0, and let t l , . . .  ,t,~ be zeros of rn on (0, 1]. We show below tha t  

(6.9) N := #/={tj : tj > 171} < en + O ( v ~  log n). 

Note that  for other  zeros we have 

x - tj 2 1 
> 1 - ~ ,  t J < n ~  , x e [ ~ , l ] ,  

so tha t  
x - tj 

l -I  ->e-2,  x c 
x ~ - t j  

Therefore,  we obtain from (6.8) 

[rN(x)l <_ e~l-le2e -n~°(x), x C [rl, 1], 

where rN is of degree N. 

Lemma 2.1) we obtain 

1 ~1 C1 ~1 f l  
N = f ,  > logirN 1Ida > d a + n  qoda. 

,]0 o 7 

Dividing by n and letting n -+ oc yields, by (6.9), 

e >__ qoda. 

On taking logarithms and integrating against da (see 
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Since this holds for any r / >  0, (1.17) follows. 

It remains to prove (6.9). The  same reasoning as above shows that  

147 

x - tj 
1-I >_e 

Thus,  we get from (6.7) tha t  

On taking logarithms, dividing by x and integrating from en :=  

r / n - 2 e x p ( - T r v ~ - N )  to r/n -2, we obtain first, by Newman 's  inequality, and 

then dividing by ~ n~-~ dx /x ,  tha t  
• C t~  

1 log ̀) n - 2 r / -  log 2 e,~ ~r 2 n - N 

l o g n - 2 r / -  loge,~ 2 logn-`)rl/en 

With  our choice of e~, we get 

l o g n - 2 z / -  7 rx /~ -  N _< cl - 7rv/n(1 - ¢) 

and (6.9) follows. | 
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