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ABSTRACT

Necessary and sufficient conditions are obtained for the existence of
sequences of rational functions of the form r,(z) = pn(z)/pn(—z), with
pn a polynomial of degree n, that decrease geometrically on (0,1] in
accordance with a specified rate function. The technique of proof in-
volves minimum energy problems for Green potentials in the presence of
an external field. Applications are given for the construction of ratio-
nal approximations of |z| and sgn(z) on [—1, 1] having geometric rates of
convergence for = # 0.

1. Introduction

Rational functions of the form

(1.1) "'n(x) = Pn(z)/Pn(_x)
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(P, stands for a polynomial of degree < n) play an important role in rational
approximation on [—1,1]. Once we have constructed r,, of the form (1.1) that is
fast decreasing on [0, 1] (note that r,(0) = 1), we automatically get good rational
approximants for |z|,sgnz, and related functions (cf. [11], [4], [19], [8]). On the
other hand, Newman'’s inequality (cf. [11], Lemma 3.1)

(1.2) /zl log

implies that any 7, of the form (1.1) must satisfy

—t|dt 2
—g—}—_tTZ——T;_’ 0<IE<1, CEC,

1
(1.3) I[nal)lclrnl > exp {—W2n/2log —]—;} , 0<z<l,

)

so that such r, cannot decrease “too fast” (see also [3]). Let us formulate a
general problem.

Given a function ¢ that is continuous on [0, 1] and satisfies ¢(0) = 0, we wish
to find a sequence r,,,n > 1, of functions of the form (1.1), with the property:

(1.4) Ira(z)] < Ce™™@, 0<z<1, n>1

Under what conditions on ¢ do there exist such 7, 7 We also consider a weaker
property, namely

(1.5) Irn(z)] < Mm@ <z <1, n>1

’

where o(n) is uniform in z. Still weaker, is the property:
(1.6) Ira(z)| < Ce~m@) 0<z<1, n>1

for some positive constants C, c.
The existence of 7, satisfying (1.6) is settled by

THEOREM 1.1: Let ¢ € C[0,1],¢(0) = 0. Then there exist r, with property
(1.6) if and only if

(1.7) /01 Mdz < 0.

x

This result was proved by V. Maimeskul and the authors in [8]. (Although not
stated explicitly, it follows from Lemma 3.1 and Theorem 4.2 in [8].) The proof
also provides an estimate for a constant ¢ in the exponential term of (1.6). For
example, if ¢ is increasing on [0, 1], one can set

o -1
c= {Z(p@_k)} .
k=0
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However, the method of [8] is not suitable for producing sharp estimates.

In this paper we utilize a potential theoretic approach that yields best possible
estimates. The method is similar to one used by V. Totik in his paper [16] on
fast decreasing polynomials, and it is based on a study of a certain equilibrium
problem. In our case, the problem is the following one.

Given a measure g > 0in D ;= {z € C: Re z > 0}, let
z_+t| du{t), z€D
z—1

(1.8) Ul (2) ::/log

denote the Green potential of y. Find g of total mass {|g|| = 1, with support
S(p) C [0, 1], that satisfies, with some constant c,:

(1.9) U —p=c, onS(p),

(1.10) U¥ ~p>c, onl0,1].

Note that this is a non-standard “singular” problem, since [0, 1] touches the
boundary of D. Another complication is that the condition (1.7) allows ¢ of the
form

C —a
@(z)z(logg) , a>1, ¢>1.

Such a ¢ has an integrable derivative but ¢’ is not in L,[0,1], for any
p > 1. Therefore, known results concerning the density of u (cf. [9], [16]) are
not applicable.

The relevance of the above equilibrium problem is obvious: given a polynomial
n
Pu(2) =] (== ¢,
Jj=1

we may write
| Pu(2)/Pa(=7%) | = exp (—nUg"(2)),

where
1 n
Vo= =30 leall =1,
j=1

and d¢, denotes the unit point mass at (;. Then the property (1.5) can be
formulated as

(1.11) Uz (z) - pla) > o(1), z€[0,1]
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while (1.4) becomes
(1.12) U (2) - p(z) > O(n~Y), z€[0,1]

Thus, our goal is to describe ¢ for which ¢, of (1.9) is zero; for then, on
discretizing i, we may hope to get 7, of the form (1.1) that satisfy (1.4) or (1.5).

The paper is organized as follows. In the next section we collect some auxiliary
results. In particular, a generalization of Mhaskar-Saff’s F-functional is given.
In Section 3 we show that the problem (1.9), (1.10) has a unique solution, and
then we prove

THEOREM 1.2: Given ¢ € C[0,1],¢(0) = 0, let U¥,c,, be as in (1.9). Then the
following statements are equivalent:

(i) There exist r,,n > 1, satisfying (1.5);

(ii) there holds

1 i
(1.13) %/O (UB(2) - ) m/_id—-—_xz <1

(i) cu=0.

Of course, it is desirable to have a condition in terms of ¢. The necessary
condition is immediate—if we have (1.5), then ¢, = 0 by (iii), so that ¢ < U} by
(1.10). Then (1.13) implies that

2 dx
1.14 — —_— < 1.
( ) W2A W(x) .’E\/l——.’l,'2 -

In many important cases this condition is also sufficient. In Section 4 we prove
(compare with Theorem 3.3 in [16]) the following.

THEOREM 1.3: Let ¢ € CI0,1], ¢(0) = 0, and assume additionally that ¢ is
increasing and concave on [0,1]. Then there exist r,,n > 1, with property (1.5)
if and only if (1.14) holds.

In Section 5 we consider the stronger property (1.4). Here we need to analyze
the density of the equilibrium measure g. In doing so we impose extra conditions
on ¢ that ensure a regular behavior of ' near 0. Assume that for z small enough,
(a) z¢'(z) is increasing;

(b) for some § > 0, z¢'(z) < (1 - 8)p(z).
Then we have
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THEOREM 1.4: Let ¢ be as in Theorem 1.3, and assume that ¢ satisfies (a), (b)
for x small enough. Then there exist r,,n > 1, with property (1.4) provided
strict inequality holds in (1.14), i.e.

2 [l dz
1.14' — / ) ——— < 1.
(1.14) 3 0</?():L.,—1#x2
Remark: Many important functions, like z%,a < 1, or (loge/z) ™%, > 1, sat-
isfy (a) and (b) above. Moreover, applying a finer discretization technique (cf.
[7], [17]), one can replace (1.14") by (1.14), at least for the case p(z) = cx®, a < 1.

Finally, we apply our results to rational approximation of |z|. It is well-known
that the error in best approximation of |z| by rational functions of order n behaves
like exp(—my/n) (cf. [19],{14]). However, the best approximants do not converge
to |z| geometrically fast on any subinterval of [—1,1] (cf. [12]). In [8] near best
rational approximants R,, were constructed with the property

(1.15) ||z = Ru(z) | < Cexp{—c1v/n — cong(|z])}, z€[-1,1].

The same method shows that ¢; can be chosen arbitrarily close to m, but no sharp
estimate of ¢o was given. Here we prove a more precise result.

THEOREM 1.5: Let ¢ be a continuous increasing function on [0, 1] with ¢(0) = 0.
Let 0 < ¢ < 1, and assume that a sequence {R,},n > 1, exists such that for
z €[-1,1]

(1.16) |x|—Rn($)‘ < Cexp{—m/n(l—E)—ncp(|a:|)}.
Then

2 o) 2 <

w2 0 v zV1 —z22 ~

In particular, if e = 0, then ¢ = 0 so that geometric convergence is not possible.
Conversely, if strict inequality holds in (1.17) and ¢ is as in Theorem 1.4, then
there exist { R, } satisfying (1.16).

(1.17)

2. Auxiliary results

We start with a simple observation. Let E be a compact set in the open right
half-plane D, and let F := {~Z : z € E} be its reflection about the y-axis. The
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pair (E, E) is called a (symmetric) condenser. Given a positive measure p on
E, define i on E, by symmetry. Then the Green potential of i can be written
as an ordinary logarithmic potential of the signed measure p — i :

U = [ 1og

With this observation in mind, the classical result of T. Bagby [2] can be stated
as follows (see also [20] or {13, Section II.5]).

gf—ﬁidw) = [rog g dla =m0

There exists a unique positive measure wg on E, of total mass ||wg]| = 1, such
that
(2.1) Uyt = ! = ! =, e onk
cap,E' 2cap(E, E)
and
(2.2) UgE < ! n©
cap,F

(As usual, q.e. means “except for a set of zero logarithmic capacity.”) The
measure wg is called the equilibrium measure (or distribution) on E relative
to D, and the constant cap £ is called the Green capacity of E relative to D
(it also coincides with the capacity of the condenser formed by E and the y-axis).
In particular, for E = [¢,1},0 < £ < 1, we have {cf. [1])
1 mK(g)

(2.3) cap, E - K'(e)’

where K(¢), K'(¢) denote the complete elliptic integrals for moduli €, vV'1 — €2,
respectively. The equilibrium measure wj ;) =: wg is given by

gt tele )

1
2.4 dwp(t) = —— {(1 - *)(t* — €
(24) o5(t) = i {007 ~€)
Next, we shall need a maximum principle for Green potentials (cf. [13, Section
I1.5]). We state it for the special case S(u) C [0,1], since this will suffice for our
purposes, and the proof in this case is elementary. Indeed, it is easy to see that

z+t Rez+t‘
2. , Rez>0, 1 0, t>0,
(2:5) z—t‘ Rez -1t 2 m 2 7
and
z+t 141t
— <t<1.
(2.6) z——t’< T ¢ Rez>1, 0 <
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Therefore, U} attains its maximum in D only on {0, 1]. Since U} is convex on
any subinterval of [0, +00) ~ 5(u), we obtain that

(2.7) Uk (2) < aup Uk, zeD, S(u)Clo,1].
7

Moreover, the maximum principle for harmonic functions shows that strict
inequality holds for z ¢ S(u), unless S(u) = {0}, in which case U = 0.

We are now in a position to prove an important result that can be viewed as
a strengthened version of Newman’s inequality (1.2).

LEMMA 2.1: Let o be the measure on (0,1) given by
2 dt

(note that ||c}] = o0). Then

(i)

(2.9) Uj(z) =1, z€(0,1],
(2.10) Ug(z) <1, z€DN(0,1].

Furthermore,
(ii) for any positive finite measure p in D with S(u) C D, we have

(211) Juzdo <l
and
(2.12) [updo = ull = wto), if S < 0,1

Proof: (i) For 0 <& < 1, set

1
I.(z) ::/ loglz—H|{(1 —12)(¢* —52)}"‘/2dt.
e r—t
Then (see (2.1), (2.3), (2.4) ) for € > 0, we have
I.(z) =7nK(e), e<z<l

Since K(e) = 7/2 as € — 0 (cf. [1]), equation (2.9) will follow provided we can
show that I. converges to Iy. Fix 0 < z < 1 and write, for £ < z/2,

z/2 1
Ie=/ + / = Lo+ I
5 z/2
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The integrand in /.2 is decreasing as € — 0, so the monotone convergence theorem
applies. In I;, we make a substitution t2 = 22s/4 + £2(1 — s). Then

Iy = /@) =& /0 w(t)%,

where )

1
t? = %—s +£%(1 - s).

o z+t
2 08

1
B(t) = m_ti A
Since 1(t) is bounded on (0,z/2], we may appeal to the bounded convergence
theorem. Consequently, (2.9) holds and then (2.10) follows by the maximum
principle.
(ii) By the Fubini-Tonelli theorem,

/ Utdo = / Ugdu,

so that (2.11), (2.12) follow from (2.9) and (2.10). |

We turn now to the equilibrium problem in the presence of an external field.
Given a continuous real-valued function ¢ on a compact set E C D, with
cap E > 0, then it is known (cf. [13, Section I1.5]} that there exists a unique
measure y on E| having total mass 1 and such that, with some constant c,,

(2.13) Uk —p<c, onS(u),

(2.14) Uf —p>cu qe onkE.

Now, let K be a compact subset of E (of positive capacity). Integrating (2.14)
against the equilibrium measure wg, we obtain (recall (2.1)):

1
CuS/Ué‘dwK~/sodwK = /U;”"du—/sodwx < capgK—/wdwx‘

For K = S{u) the opposite inequality holds (integrate (2.13) against wx and
apply (2.1), recalling that sets of zero capacity have zero wx-measure). We have
thus proved the following.

THEOREM 2.2: Define, for any compact K C E,

1

(2.15) FK) =~ o +/<pdwK.

Then
max F(K) = F(S(w)) = —cp.
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Remark: The F-functional
F(K) = log(cap K) — /deK

(note: cap not cap,) was introduced and studied by Mhaskar and Saff [10] in
connection with the equilibrium problem for logarithmic potentials of positive
measures. Theorem 2.2 is an extension of their result. (Our ¢ is ~Q in the
notation of [10].) Note that this can be extended further to the non-symmetric
case.

We conclude with two observations. Let E be a regular compact set (e.g., a
segment) in D, let v be any measure in D, and assume that, for some continuous
@ on E, the relation Uy — ¢ > c holds g.e. on E. Then it must hold everywhere
on E (cf. [16, p.138]).

Next, since

Ug(2) = /log |—z—_1_—t|dz/(t) + u(z),

where v is harmonic in D, the principle of descent and the lower envelope theorem
(cf. [15, Appendix], [6], or [18]) can be applied to UY.

3. The equilibrium problem

Let E, := [e,1]. We have seen in Section 2 that there exists unique p. on
[€,1], llpell = 1, such that

(3.1) Ufs —p=ce, on S(ue),

(3.2) U —p>c, on [g]l],

where ¢, is some constant. We now show that, as € — 0, p. approaches the de-
sired equilibrium measure (, that satisfies (1.9), (1.10). Integrating (3.2) against
dt/t we obtain

, s b dt 5
{ce+r[2%r}1go}logg S/E Ué‘f(t)? = /{/e lo

In the last step we used Newman’s inequality (1.2) and the fact that ||u.| = 1.
Since ¢ is continuous and ¢(0) = 0, we obtain, on letting first ¢ — 0 and then
6 — 0, that

2

dt T
}dﬂe(x) < 7

t

T+t
—1

limsupe, < 0.
e—0
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On the other hand, as U;f > 0, inequality (3.1) shows that ¢, is bounded from
below, by —max(g 1] ¢

Now, let & be any weak-star limit of {¢.}. Passing to a subsequence we may
assume that ¢, — ¢, <0.

Applying (in D) the principle of descent to (3.1) and the lower envelope theo-
rem to (3.2), we obtain that

Uy —p<cu onS(p) {0},

Uf —p>c, qe onl01]

The second relation holds (see the end of Section 2) everywhere on (0, 1], and as
¢, < 0 it also holds at 0. The first relation holds at 0 if 0 is an isolated point of
S(p), since then U} must be continuous at 0. In the opposite case we have

Cp > li;n_jgf(U; -p) 2 0.
z€S ()

Thus, ¢, = 0 and again U} — ¢ = ¢, at 0 € S(u). Therefore we finally obtain

(3.3) U —p=cu, onS(u),

(3.4) Ut —p2>c,, on0,1].

Being a weak-star limit of unit measures, p is also unit, and the existence of the
solution of problem (1.9), (1.10) is established.

Remarks: (a) It may happen above that y has a mass at 0. For example, if
¢ =0, then ¢, must be 0 (since U} > 0, ¢, <0), and then (3.3) yields U¥ =0
on S(u). By the maximum principle, U} < 0 in D, so that U} is identically 0.
Therefore, the corresponding  is a unit mass placed at the origin.

(b) By (3.3), U} is continuous on S(x); hence ([18, Theorem IIL.2) it is continuous
in C, except perhaps at 0. Now, if 0 is not a limit point of S(u), this potential
is obviously continuous at 0. In the opposite case, ¢, = 0 and (3.3) shows that
limg 04 U¥(z) = 0. Then we have lim, o, ,ep U}(2) = 0 by the same argument
that was used in the proof of the maximum principle (2.7). Finally, as Ul(-z) =
U} (z), we obtain that U is continuous in C.

Next, we prove the uniqueness of y above. This follows from a more general
result that shows that U} — c,, is the least superharmonic majorant for ¢, in the
class of all majorants of the form Uy + const, |lv]| <1.
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LEmMMA 3.1: Let p satisfy (3.3), (3.4), [[ul| = 1. Assume that U] —a > ¢ on
[0,1], where ||v|| < 1 and a is a constant (necessarily, non-positive). Then

(3.5) ¢ < Uf~c, <U/—a onl0,1]

Proof: We consider two cases.

Case I a<ey.
Let h = Uy —U¥. his superharmonic in D S(u), bounded from below (U > 0
while U} is bounded) and satisfies

liminfh > 0.
z2—8D

On S(u) we have

ho= UL -U = (U —¢) - (U} ~¢) > a—c,

Now, since U} is continuous, h is lower semicontinuous. Hence,

liminf h(z) > h{z) > a—cp,.
z—x € S(u)
Applying the minimum principle for superharmonic functions, we conclude (as
a—c, <0)that h > a—c, in D, and (3.5) follows.

Caseg II: a > c,.
Then the same reasoning as above gives A > 0 in D). Next, since a < 0, we see

that ¢, < 0, so that 0 ¢ S(p). By Lemma 2.1 (apply (2.12) to u and (2.11) to
v) we obtain, as h > 0 and ||v|| < ||u]| :

oznun—nunz/(U;—U;)da:/hdaz/ hdo > (a=c,) [ do>0
S(u) S(p)

and we have a contradiction. Thus, Case II is impossible, and the lemma is
proved. | |

We now proceed with the

Proof of Theorem 1.2: (i) = (ii) Assume (1.5) holds. This means (see (1.11))
that with |lv,|| < 1, the relation Uy (z) — ¢(z) > o(1) holds uniformly for
z € [0,1]. Let v be any weak-star limit of v,,. Then Uy = ¢ on [0,1], and Lemma
3.1 yields U}l — ¢, < U, . Integrating this against do (see Lemma 2.1 (ii)), we
obtain (1.13).

(ii) = (iii) This is obvious since otherwise the integral in (1.13) diverges.
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(iii) = (i). Here we know that ¢ < U¥ on [0,1], U} is continuous, S(x) C [0, 1]
and |[u|| = 1. We need to construct vy, ||vx|| < 1, such that (1.11) will hold. We
follow the reasoning in [9, pp. 40-43]. Assume first that u{0} = 0, and define
0=ty <t;<-<t,=1by

te 1
(3.6) / dp=~-, k=1,2,...,n.
tr—1

Let v, be a measure having a mass 1/n at each t;, 1 < j <n. Fix z € {0,1]
and let t;_1 < z < t;, for some j. Since log|(z + t)/(z — t)| is increasing on
[0,¢;-1] and is decreasing on [t;, 1], a simple estimation gives

T+

T —

t.
V. ’ t
(3.7) U (z) > Uk(z) - /t " 1og 2E

l du(t).

If t € [tj_1,t;] satisfies |t — z| > n~!, we have

t
log i—%} < log (14 2n),

so that the integration over such t’s will contribute O(logn/n) to the integral in
(3.7). If we can show that

(3.8) / log
lt—z|<n=?

uniformly for z € [0, 1], we are done because (3.7) then gives

r+t
T—1t

'du(t) = o(l), n— o0

Uy > Ut —o(1) > p~o(1), on[0,1]

as required.

Assuming (3.8) is false, one can find z € [0,1] and a sequence z, — « such
that

(3.9) / log
[t—znj<n—t

Now let § > 0. Since z,, — x and the integrand in (3.9) is nonnegative, we only

strengthen (3.9) if we replace the range of integration by | t — z |< 4, provided n
is large enough, i.e.

(3.10) / log| ——
{t—z|<é
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Next, as 1 has no point masses, we can select § so that

/ log
[t—x|>8 ‘

For n large enough, we can replace z by z,, in the integrand, thereby changing

t’du(t) > Up(a) - 2.

the integral by o(1). Then, on adding the resulting inequality to (3.10) we obtain

U(za) 2 Uk()+5 —oll), nzns,

contradicting the continuity of Uk.

Finally, if 4{0} :=1—p > 0, define p, on (0,1] by p, := p/p. Then we obtain
a unit measure and, by the preceding argument, we have a stronger result with
¢ replaced by Uj*. |

4. Proof of Theorem 1.3
Let

2 [t dz
4.1 = — T) —.
( ) p 2 0 QO( ) .I\/l—-—fl,‘j
Recall that the condition p < 1 is necessary for (1.5) to hold. Thus, in view of
Theorem 1.2, we only need to show that if p < 1 and ¢ is increasing and concave,
then ¢, = 0. We will prove a stronger result, part (ii) of which will be used in
Section 5.

THEOREM 4.1: Let ¢, p be as above, and assume that 0 < p < 1. Then
(i) the equilibrium potential U} satisfies

(4.2) U=, onl0,1].

Moreover, S() = [0,1) and p has a mass 1 — p at 0.

(ii) Let iz denote the restriction of p on (0,1] (so that (4.2) holds with p replaced
by jt). Then [ is absolutely continuous with respect to dt, and its density is given
by

1 ’
(4.3) u(t) = %t(l _ t2)'1/2 PV/ t;ﬂ (5)2 (1- 82)1/2 ds,
0 — 8

for a.e. t € [0,1].

Proof: (i) Proceeding as at the beginning of Section 3, we get a unit measure
e on [g,1] that satisfies

(4.4) Ul —o=ce, on S(u),



138 A. L. LEVIN AND E. B. SAFF Isr. J. Math.
(4.5) Uys—p=ce, on le,1].

Recall that we have shown that lim,_,gc. = ¢, < 0.

Now, let I be an interval in the complement [g,1] > S(u.) with endpoints
belonging to S(ue). Then Uk< is strictly convex on I while ¢ is concave. Since
(4.4) holds at the endpoints of I, (4.5) is violated inside I. Thus, there is no such
I, which means that S(u¢) is an interval, say [a., b:]. Next, (4.4) holds at b, and
U}c is decreasing for ¢ > b.. Since g Is increasing, b, must be equal to 1, since
otherwise (4.5) is false on (b, 1]. So, S(ie) = [ae, 1]. Now, by Theorem 2.2, ¢, is
given by

e = Fllat) = s { [ o0 {0 O - - nk (o)},

where we used (2.3), (2.4).
Let I. denote the integral in { }. Putting t2 = s + a2(1 — s) we obtain that

ds _ p(Vt)
= [ vl ati-s) =2 = YO=57

Since ¢(0) = 0 and ¢ is concave, we have vt ¢'(v/t) < p(v/t), which means that
1(t) is decreasing. Therefore,

w2

I</zp(s __1_ / _ﬁST’

by our assumption p < 1. On the other hand, 7K (a.) > n?/2. Thus, ¢, > 0 and
we have
0> ¢y = lime. > 0.

e—0
Hence, c,, = 0, so that U¥ — ¢ = 0 on S(u). Since U — ¢ =0 at 0 as well, the
same reasoning used for j. shows that S(u) = [0,1]. Thus, (4.2) holds. Recalling
the definition of p we obtain from Lemma 2.1(ii):

p = [wdo = [Updo = Jull - (0D = 1= utfo}),

(ii) We use the method of [9], but care must be taken near 0, since ¢’ may not
be in Ly[0,1},p > 1. So let us consider

olz), ze€lgl]
(4.6) we(z) =
226 re [0,¢],

€




Vol. 114, 1999 FAST DECREASING RATIONAL FUNCTIONS 139

which is bounded. Next, extend ¢, to [—1,0] as an odd function. Then we may
apply the known result (cf. [9] or [13, Ch. IV.3]), which asserts that the function

1 t 1-— A
(4.7) = ,/ ks / J—
1-—t¢ 1+ s t—s 1—t2

is defined a.e. on [—1, 1], belongs to L,[—1,1], 1 < p < 2, and satisfies (with any
choice of a constant A):

(4.8) /_Iog‘ ! I ve{t)dt = pe(z)+ca, ze€[-1,1]

Remark: It is assumed in the above references that the function . (— f, in their
notation) is even, while our ¢, is odd. However, this assumption was used for
purposes other than proving (4.7), (4.8).

Since we want to return to Green potentials, we choose A to ensure that v, is

odd. Set
PV/ 1-s “"E
1+s

(since ¢, = const near 0, the PV-integral exists). With the above choice of A,

we have
1
elt) = / Vim e () e,
1- t2 s
that is,
_ t T4 4G s) ds
ve(t) = 2m f_s
(49) / QDE S)

\/1—t2

where, in the last step, we used the evenness of ¢.. Thus, v, is odd. Then the
integral in (4.8) is also odd in z, and so is .. Hence, c4 = 0 and applying the
oddness of v, we may rewrite (4.8) as

(4.10) /0 1 1oglg‘ ve(®)dt = po(z), z€0,1].

Next, we verify that v. > 0 on (0,1). A standard calculation shows that

1
d
(4.11) PV/0 Vies g —832 = 2 te(-1,1)~o}

21
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Therefore v, can be written (use the second relation in (4.9)) as:

(412) v (t) = % tf;_(tzz N 1_t2 \/— <pe we( ) 4.

Since ¢, is positive and nonincreasing on [0, 1|, both terms in (4.12) are positive;
hence v. > 0.

Now, define p. > 0 on [0,1] by du,(t) := ve(t)dt. (The present u. should not
be confused with the one that appeared before.) Then (4.10) and Lemma 2.1(ii)

yield
el = / pedo.

Let ¢ — 0, and let & be any weak-star limit of .. The usual reasoning gives (as
pe — ) that U* = ¢ on [0, 1]. Since . 1 ¢, we obtain

(413) 17l = Yim [c]) = / odo = p

(see (4.1)). The uniqueness of the equilibrium measure then shows that g

coincides with & as defined in Theorem 4.1 (the restriction of x on (0,1]). To

complete the proof, it remains to show that v, as given by (4.3), is the limit of

ve, in L1{0,1]. Note that the existence a.e of the integral (4.3) follows from the

established existence of the corresponding integral (4.9), and as ¢. = v on [¢, 1].
Exactly as we deduced (4.12) from (4.9), we may write v in the form

414)  oft) = %\j‘f_ft)ﬁ m / iz “’ AG R AOFN

Now, fix 0 < § < 1/2 and rewrite (4.12), for t € [6,1 — 6] and € < 34, in the form
te'(t) 2t (/1 ¢'(s) —¢'(t)
ve(t) = V1-s2 I~ s
e(t) = V1 —t? 1r2\/1—t2
— A
s [ —p) VImsas),
0

2 _ g2

where we used the definition (4.6) of ..

As € — 0, the second integral is O(p(¢)) — 0, uniformly for ¢ € [4,1 — §].
The first integral is increasing to the integral in (4.14). Since fol Ve = ||tte|| are
uniformly bounded (see (4.13)) we conclude that v € L1[,1 — §], that

1-5 1-5
(4.15) / v = lim ve < C,
8

>0 [s -
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and that
1-6
(4.16) / lu—v| =0, €—0.
é

Since (4.15) holds for any & > 0, we obtain that v € L1(0,1]. Therefore,

5 1
(/ +/ )v -0, -0
0 -6

The same is true for v, uniformly on ¢, as (4.13) shows. Combined with (4.16)
this gives: v — v in L1[0, 1}, and the proof is complete. ]

5. Proof of Theorem 1.4

We first show that the extra conditions (a}, (b) of Theorem 1.4 ensure that, for
some Cy,Cy > 0,

(5.1) Cy <v(t) t/p(t) < Co, tsmall,

where v is defined in {4.3). Extend ¢ to [-1, 1] as an odd function and rewrite
(4.3), using the evenness of ¢':

'(s)
t) = ——= PV VAl
v(t) = 7r2\/1—t / t—S
With the aid of ; ] .
(t—s)s Ti-s + s

we further rewrite v as follows:

v(t) = ——— PV / \/— L (

since the integral involving 1/s vanishes because the integrand is an odd function.

Next, write
Vi-st=v1-12 + (/1-s2 = V1-12).

1——t2

Then we obtain

(5.2) o(t) = %pv /_ 1 ‘fl_(sgdH \/‘%,

where
0< B(t)<ct, te€(0,1].
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Now express the integral in (5.2) as

/ (8) cﬂ()+¢,(t)logl_ir_§

e

The second term is positive. Also,

—t
/ /—Qt/ 2 ds>0
—S

as ¢’ is decreasing. Furthermore,

/_t_zt/ w()d >/0‘s0’(st):;p’(t)ds

, o) o el
>—Ammg #olds = A0 i) > 520

by the assumption (b), provided ¢ is small. Collecting all estimates, we get the
left-hand inequality in (5.1).
Now we return to the integral in (5.2). We have

—2t 1 7 1 /
/ +/ —@ds:zt/ 2(5) 45 <.
_1 o) t—8 9 12— 52

¢ (s) o p(2)  20(1)
[ﬂpﬁd<z[%¢@“:‘7“<“r*

by concavity. Finally,

. / v'(s) /” P —¢t) . _ 1 /” (t—s+5)¢'(s) =t (t)
0 0

Also,

t—s t t—s

1 N 1/” 59/ (s) — tg' (1)
o i

< —W(zt)a
t—s

since the integrand is negative, by the assumption (a). Thus we have the second
inequality in (5.1).
We can now proceed with the

Proof of Theorem 1.4: We have to construct a measure v, having a mass 1/n
at some tq,...,t, and such that (see (1.12))
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Consider the function (1 + ¢)y. Since strict inequality holds in (1.14'), there
is € > 0 such that

dx
w / Groee) == = "
By Theorem 4.1, the equilibrium measure 4 for (1 + €)¢ has no mass at 0 and it
satisfies U¥ = (1 +€)p on [0,1). Let 0 = tp <t; <--- <, = 1 and vy, be as
in the proof of Theorem 1.2. The relation (3.7) now becomes

x4t

U (o) = 1+ )l - [ tog |2

3=

Ndu(t)y z € (tj-1,t5)-

Thus, our task is to show that

dult) < epla) +

t T+t
, It
(5.3) / og |2 ti

7

for some C and for all z € (t;_1,¢;), 7 =1,...,n. We have already shown that
the above integral is o(1) uniformly in z € (t] 1,t;) and in j. Therefore, (5.3) is
obvious for z > ¢ {any § > 0) provided n > n(d), and we may only consider the
case t;_; < x < t; <&, where (a), (b) hold.

By the lower bound in (5.1) and by concavity of ¢,

1 § 1/“ o(t) 1t 1
- = v(t)dt > — At > — "(Bdt = —(o(t:) — ot 1)),
n / (e 2 o | Sz o[ @ = Sl = elt-)

Therefore, for t;_, < x < t;,

(5.4) max ¢ = (t;) < pla)+ =,

[tJ 1 .7]

uniformly in j, provided ¢; < §. Next,

t; t.
7 t 7
/ log is v(t)dt < / log?
ti_q T —t tia

3 7

[

1
T+t dt b ’
The first integral is bounded by an absolute constant (put ¢ = 7z). The second
is bounded by

{/tj 1)(t)dt}2 max {tv(t)}? < c;n~1/? max o(t)/?

tj-1 [tj—lytj] [tj—latjl

<c3 [Tfl/? ()% +n~ 1},
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where we used the definition of t;’s, the upper bound in (5.1) and, in the last
step, (5.4). Since for any £ > 0,

2
[ )
r < 3
@\ 5 —E(p+4en’

the bound (5.3) follows. |

6. Rational approximation of sgnz and |z|

Throughout this section, r,, denotes a function of the form (1.1), while R,, denotes
some rational function of order n, not necessarily of the form (1.1).

We start with a lemma that is due to D. Newman {11}, except for a minor
modification.

LEMMA 6.1: Let &, denote a positive function on [0,1].
(i) Assume that

(6.1) |lz| = Ra(z)| < dn(lz]), =€ [-1,1].
Then there exists r,, that satisfies
(6.2) zlra(z)] < 28,(z), =z €]0,1].

Moreover, we may assume that all zeros of r,, lie on (0,1].
(i1} Assume that

(6.3) lsgnz — Rp(z)] < dn(|z]), z€[-1,1}.
Then there exists r,, such that
(6.4) |rn(z)| € 26,(z), =z €]0,1].

(iii) Assume that r, satisfies (6.2) and, additionally,
1
(6.5) 1+ 7p(x) > 3 %€ [0,1].

Then there exists R,, that satisfies (6.1} with &, replaced by 46,. Similarly, if
T, satisfies (6.4) and (6.5), then there is R, satisfying (6.3) with 8,, replaced by
45,,.

Proof: (i) If R, is even, (6.2) follows from [11], with factor 2 dropped. For
arbitrary R, := pn/qn, we may assume g, > 0 on [-1,1]. Then (6.1) implies

2qn(2) — pa(ta)| _ | 2gn(£2) — pu(dz)
¢n(Z) + gn (1) gn(ET)

< ba(2),
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for z € {0, 1]. Therefore, with

= _ pa(2) + pu(=7)
Bule) = @ anl )

we have |z — R, (z)| < 20,(z), z € [0,1]. Since R, is even, we may continue as
in [11].

Next, let [{z — &)/(z + £€)] be one of the factors of |r,|. In view of (2.5), (2.6)
we only strengthen (6.2) if we replace £ € D by a suitable fe (0,1]. For £ ¢ D,
the above factor is > 1 and we may drop it.

(ii) This follows easily from (i).

(iii) See [11]. 1

To ensure (6.5) for r, satisfying (1.4), a small adjustment is needed. Let
Ira(z)] < Ce™™P@) | 2 € [0,1].

Assuming ¢ is increasing, define 0 < o, < 1 by ny(a,) = log2C. Now, if r,, has
a zero, &, on (0,a,) we replace it by «,. Since

z—§
< z+¢€

T — Qp
T+

y T>0m, §<ag

we see that a new r, still satisfies (1.4) on [an,1]. On [0,ay], |rs| < 1 while
C exp(—ng(z)) > 3. Thus (1.4) still holds with C replaced by 2C. Therefore a
new r,, satisfies (1.4) and also (6.5). With these preliminaries, the following result
is an immediate consequence of the necessary condition (1.14) and Theorem 1.4.

THEOREM 6.2: Let ¢ be continuous and increasing on [0,1] with ¢(0) = 0.
Assume there exist R,,,n > 1, such that

(6.6) lsgnz — Rp(x)| < Cexp(—np(z)), z€[-1,1].

Then ¢ satisfies (1.14).
Conversely, if strict inequality holds in (1.14) and y is as in Theorem 1.4, then
there exist R,,n > 1 satisfying (6.6).

We now turn to the approximation of |z}.

Proof of the second part of Theorem 1.5: Given € > 0, let n be large enough.
Since ¢ satisfies (1.17) with strict inequality, (1.14’) holds for e~!¢. Hence there
1s an e such that

[Tine)] < ce” "l < e on [0, 1].
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Next, put p := [n(1 — £)). Then (cf. [19)) there is an r, such that 1+ 7, > % on
[0,1] and
|y ()| < coe™ VP,

Note that c1, ¢z are independent of n. Since |r[,| < 1, we have 1+7,7[ne) > ion
[0,1]. Then Lemma 6.1(iii) yields R, of order p + [ne] < n that satisfies (1.16),
with a constant independent of n. |

Proof of the first part of Theorem 1.5: Assume {1.16} holds. Since ¢ is increas-
ing, ¢ > 0 on (0,1]. Then, applying Lemma 6.1(i), we get r,, that satisfy

(6.7) x|r(z)| < cexp <~7r\/n(1 - 5)) , z€[0,1]

and also
(6.8) Ll (x)| < ce™™®, z e o,1].

Fix n > 0, and let ty,...,t, be zeros of r, on (0,1]. We show below that
(6.9) N =#{t;: t; > —:L‘n} < en+ O(v/n logn).

Note that for other zeros we have

T tj 2 1
>1——, t,;,<—n xz€|nl
it | 2 T BERT [, 1],
so that
-2

Therefore, we obtain from (6.8)
rn ()] < en~lete™ )z e 1],

where ry is of degree N. On taking logarithms and integrating against do (see
Lemma 2.1) we obtain

1 1 1 1
N = > / 10g]7‘;,l|d0 > 01/ dU—{—n/ pdo.
J0 n n n

Dividing by n and letting n — oo yields, by (6.9),

1
€ 2/ wda.
n
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Since this holds for any n > 0, (1.17) follows.
It remains to prove (6.9). The same reasoning as above shows that

T —1;

> 672

- ¥

x € [0,n7 ).

[

ti>%n

Thus, we get from (6.7) that

zlra_n(z)| < celexp (~'m/n(l - e)) , z€[0,n?p

On taking logarithms, dividing by « and integrating from ¢, :=

nm-

2exp(—mv/n — N) to nm~2%, we obtain first, by Newman’s inequality, and

-2
then dividing by f;:ln dz/z, that

2

1 log’n 2n—log’e, n—N
- BT« e —a/n(l = e).
2 logn~?n—loge, 2 logn=2n/e, - myn(l—e)

With our choice of e, we get

logn™2n~7vn—N < ¢ —ny/n(l —¢)

and (6.9) follows. |

(1]
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